This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Richness of Structures Available to P₂N₂ Inorganic Heterocycles: A Topological and Molecular' Orbital (EHMO) Analysis

Ionel Haiduca; Ioan Silagmi-dumitrescua

^a Chemistry Department, Babeş-Bolyai University, Cluj-Napoca, Romania

To cite this Article Haiduc, Ionel and Silagmi-dumitrescu, Ioan(1992) 'The Richness of Structures Available to P_2N_2 Inorganic Heterocycles: A Topological and Molecular' Orbital (EHMO) Analysis', Phosphorus, Sulfur, and Silicon and the Related Elements, 65: 1, 53 - 56

To link to this Article: DOI: 10.1080/10426509208055316 URL: http://dx.doi.org/10.1080/10426509208055316

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE RICHNESS OF STRUCTURES AVAILABLE TO P₂N₂ INORGANIC HETEROCYCLES: A TOPOLOGICAL AND MOLECULAR² ORBITAL (EHMO) ANALYSIS (Abstract)*

IONEL HAIDUC and IOAN SILAGHI-DUMITRESCU Chemistry Department, Babeş-Bolyai University R-3400 Cluj-Napoca, Roumania

Abstract. A topological analysis , based upon Polya's theorem , was used to calculate all possible isomers of P_2N_2 ring derivatives, as a function of the number of substituents attached to phosphorus and nitrogen. The analysis considered four-, five- and six-coordinate phosphorus, and two-, three- and four-coordinate nitrogen. EHMO calculations established the HOMO-LUMO orbitals and the charges of variously substituted P_2N_2 heterocycles.

INTRODUCTION

The four-membered ring containing alternating phosphorus and nitrogen atoms :

P < N > P

is the skeleton of a great diversity of heterocycles, in which phosphorus can be two-, three-, four-, five- and six-coordinate.

THE TOPOLOGICAL ANALYSIS

a) Rings containing two-, three-, four-coordinate phosphorus

In a planar P_2N_2 ring, with eight possible substitution sites: 5. 1

The full paper will be published in Revue Roumaine de Chimie.

the stepwise occupation of these eight sites leads to a number of ring systems which can be calculated using Polya's theorem¹ and an algoritm suggested by Dolhane². The results are given in Table 1.

Table 1 Number of cyclic species derived from P2N2

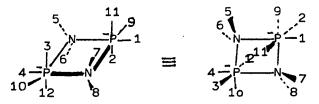
Number of substituents	Number of ring systems
0	1 isomer
1	2 isome rs
2	8 "
3	10 "
4	16 "
5	10 "
6	8 "
7	2 "
8	1 "

Mono- and di-substituted species are not reported in the literature, but a three-substituted ring system (a cation with two organic groups at nitrogen and one at phosphorus) is known. Compounds with four, five and six substituents on the ring are also known.

b) Rings containing five-coordinate phosphorus

These derive from the following skeleton, in which at least three substituents (all at phosphorus sites) are attached to the ring.

to the ring:
$$\frac{5}{10}$$
 $\frac{1}{4}$ $\frac{9}{8}$ $\frac{6}{10}$ $\frac{5}{10}$ $\frac{9}{10}$ $\frac{2}{10}$ $\frac{1}{8}$


The maximum number of substituents is ten. The number of isomeric structures derived from this unit is shown in Table 2. These include geometrical isomers. Several examples of such compounds are actualy known.

(1100 doordrate phosphorus)				
Number of	substituents	Number of	fisomers	
	3	1	isomer	
	4	2	isomers	
	5	6	H	
	6	6	*1	
	7	6	**	
	8	5	17	
	9	2		
	10	1		

Table 2 Number of cyclic isomers derived from P_2N_2 (five coordinate phosphorus)

c) Rings containing six-coordinate phosphorus

The smallest number of occupied sites in this case is four and the full occupation requires 12 substituents, as can be seen from the basic unit:

The number of isomers is shown in Table 3.

Table 3 Number of isomers derived from P_2N_2 ring with six-coordinate phosphorus

Number of substituents	Number of isomers	
4	1	
5	2	
6 7	6 6	
8	9	
9	5	
10	5	
11	2	
12	1	

There are known examples with eigth, ten and twelve substituents in the ring.

EXTENDED HÜCKEL CALCULATIONS

The extended Hückel method provided molecular orbital energies, and afforded the number of doubly occupied orbitals (DOO) and charge (CH). A selection of examples is given in Table 4.

Table 4 Molecular orbital energies (eV)

			J ,	
	PNP	HP PH	H ₂ PNPH ₂	H ₄ PNPH ₄
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	30.604 26.629 19.290 15.917 15.811 15.790 14.498 13.273 13.090 12.670 11.475 9.650 2.168 -3.602	30.663 27.122 20.450 18.890 16.710 16.650 15.920 15.540 13.470 13.270 13.130 11.470	30.663 27.121 21.481 19.957 17.363 17.172 16.146 15.917 15.536 14.557 13.273 12.928	30.665 27.122 22.243 20.456 18.089 17.511 17.011 16.623 15.927 14.587 13.273 12.451 12.264 11.487 11.417 11.124 HoMo
DOO CH	10 -4	12 0	13 + 2	15 LUMO - 2

REFERENCES

- A.T.Balaban, <u>Chemical Applications of Graph Theory</u>, Academic Press, London, 1976.
- 2. H. Dolhane, Computers & Chemistry, 5, 41 (1981).
- A.H. Cowley, M. Lattman and J.C. Wilburn, <u>Inorg.Chem.</u>, 21, 2916 (1981).
- 4. I. Haiduc, The Chemistry of Inorganic Ring Systems, Wiley-Interscience, London, 1970; I. Haiduc and D.B. Sowerby, Eds., The Chemistry of Inorganic Homo- and Heterocycles, Academic Press, London, 1987.